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Abstract

This report gives a basic introduction to block cipher design and analysis. The concepts and

design principles of block ciphers are explained, particularly the class of block ciphers known as

Feistel ciphers. Some modern block cipher cryptanalysis methods are demonstrated by applying

them to variants of a weak Feistel cipher called Simplified TEA (STEA), which is based on the Tiny

Encryption Algorithm (TEA).

1 Introduction

This report gives a basic introduction to block cipher design and analysis (intended to be understand-

able by anyone with some knowledge of discrete mathematics). We will examine the concept of block

ciphers, how they obtain their security, and the principles involved in their design. A popular class

of block ciphers, known as Feistel ciphers, will be described in detail. This report also describes and

demonstrates some modern block cipher cryptanalysis methods by showing how they may be ap-

plied to variants of a specially-designed weak block cipher, which is loosely modelled on the Tiny

Encryption Algorithm (TEA). The weaker variants of TEA are called Simplified TEA (STEA).

Section 2 is a basic introduction to block cipher design, summarising the types of attacks that a

strong cipher should be able to resist, describing the concepts of confusion and diffusion, and ex-

plaining the principle of Feistel ciphers. In section 3, the TEA block cipher is described and its only

known weakness is explained. In section 4, the STEA block cipher is introduced. Various methods

of attacking STEA, including a very efficient known-plaintext attack and some general block cipher

cryptanalysis methods are described in sections 5–10. Finally, acknowledgements are in section 11.

Preliminaries

This report assumes the following notation for some binary operations.

Exclusive-OR The operation of addition of n-tuples over the field F2 (also known as exclusive-or) is

denoted by x⊕ y.

Integer Addition The operation of integer addition modulo 2n is denoted by x� y (where x, y ∈ Z2n).

The value of n should be clear from the context.

Integer Subtraction The operation of integer subtraction modulo 2n is denoted by x�y (where x, y ∈
Z2n). The value of n should be clear from the context. Also, note that x� y ≡ x�−y.

Bitwise Shifts The logical left shift of x by y bits is denoted by x << y. The logical right shift of x by y

bits is denoted by x >> y.
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Bitwise Rotations A left rotation of x by y bits is denoted by x <<< y. A right rotation of x by y bits is

denoted by x >>> y.

Hexadecimal numbers will be subscripted with ‘H’, e.g., 20H = 32. The set of plaintext blocks is

denoted by P , the set of ciphertext blocks by C and the set of keys by K. The message block length is

m, where |P| = |C| = 2m, and the key length is k, where |K| = 2k.

2 Block Cipher Design

A symmetric-key block cipher E is a function

E : P ×K → C. (1)

Moreover, for every keyK ∈ K, we have functions

EK : P → C,
DK : C → P ,

and D = E−1. In other words, the key determines the bijective mapping of plaintext to ciphertext; it

also determines the inverse mapping of ciphertext to plaintext. If the key is fixed, and hence deter-

mines a specific mapping, the block cipher can be considered simply as a large lookup-table (substi-

tution cipher). In particular, identical plaintext blocks encrypt to identical ciphertext blocks.

Substitution ciphers in which m is small (e.g., m = 8, implying 256 distinct message blocks) are

insecure since if the attacker has knowledge of the statistical patterns in the plaintext, then they can

attempt to recover the plaintext from the ciphertext by frequency analysis. Another problem is that

if an attacker correctly guesses the plaintext that corresponds to some ciphertext then they can build

a lookup-table of plaintext-ciphertext pairs corresponding to a particular key, known as a codebook.

Codebooks can be used to decrypt ciphertext blocks without knowledge of the key.

Both problems are solved by increasing the block length, and thus increasing the number of pos-

sible messages. An attacker cannot exploit knowledge of plaintext patterns which are shorter than

the block length. It also becomes impractical for an attacker to build plaintext-ciphertext codebooks.

Typically the message block lengthmwould be at least 64 bits.

We also require it to be infeasible for an attacker, with a known plaintext (P,C), to recover the

key by exhaustive key-search (brute-force). That is, we do not want anyone to be able to determine

the key by trying values of K ∈ K until they find the key K such that C = E(P,K). By making the

key length sufficiently large we can make brute-force attacks computationally infeasible (the cipher

would then be computationally secure). The key length k should be at least 64 bits1

Having decided on the message block length and key length parameters, the designer must then

develop the block cipher in such a way that it should be able to defeat or resist the following types of

attacks, where an attacker would like to recover the key:

Ciphertext-only The attacker has knowledge of some ciphertext but not the plaintext nor the key. In

this case, recovering the plaintext (without the key) may be a successful attack.

Known-plaintext The attacker has knowledge of some ciphertext and corresponding plaintext, en-

crypted under the unknown key

Chosen-plaintext The attacker has an opportunity to have any messages of their choosing to be en-

crypted under the unknown key.

1The Data Encryption Standard (DES) block cipher has a key length of 56 bits and was broken by brute-force in June 1997.
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Adaptive chosen-plaintext The attacker has the unlimited capability to have messages of their choos-

ing to be encrypted under the unknown key. We expect that an adaptive chosen plaintext attack

would require less encryptions than a real chosen plaintext attack.

The designer follows Kerckhoff ’s assumption; that the attacker has full knowledge of the workings of

the cipher system. The security of the cipher should rest entirely in the key.

2.1 Confusion And Diffusion

Except for small message block or key lengths, it is infeasible for the block cipher designer to explic-

itly specify a plaintext to ciphertext mapping for every possible key; this would be like specifying 2k

codebooks. It is far more practical to specify the block cipher as an equation or an algorithm. So for

example, a simple block cipher with parameters (m, k) = (64, 64) might be specified by

C = P ⊕K,
P = C ⊕K.

(2)

The problem with the block cipher of equation 2 is that it is trivially broken with one known plaintext

by

K = P ⊕ C.

This block cipher is weak because it is purely linear and thus easily solvable. By using both linear and
nonlinear operations we make the block cipher somewhat more difficult to manipulate by simple

algebra. So for example, a slightly better idea would be the (m, k) = (64, 128) block cipher,

C = (P ⊕K0)�K1,

P = (C �K1)⊕K0,
(3)

whereK0 andK1 are subkeys, i.e., key-dependent variables. In this case, each subkey is half of the key

K, and thus has length 64 bits.

To recover the key K an attacker would have to solve equation 3. As there are two unknowns,

a unique solution would not be found with only one known plaintext. However, with two known

plaintexts, (P,C) and (P ′, C′), we have equations

C = (P ⊕K0)�K1,

C′ = (P ′ ⊕K0)�K1.

The attacker could subtract (modulo 232) one ciphertext from another, obtaining

C � C′ = (P ⊕K0)� (P ′ ⊕K0), (4)

where the 64-bit subkey K1 term has been eliminated. However, equation 4 cannot be manipulated

further to an equation of the remaining subkey K0 in terms of the plaintext and ciphertext blocks

because the operations ⊕ and � do not follow the distributive law. Furthermore, there is no simple

algebraic relationship between addition modulo 2m and exclusive-or ofm-bit vectors since the groups

(Z2m ,�) and (Fm2 ,⊕) are not isomorphic [8].

The idea of mixing linear and nonlinear operations in order to obscure the relationship between

the plaintext, ciphertext and key, is called confusion and is an important principle of cipher design [1,

8].

An equally important principle of block cipher design is that of diffusion, i.e., the idea that every

bit of the ciphertext should depend on every bit of the plaintext and every bit of the key [1, 8]. This
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ensures that the statistics of the plaintext are dissipated within the ciphertext so that an attacker can-

not predict the plaintext that corresponds to a particular ciphertext, even after observing a number

of “similar” plaintexts and their corresponding ciphertexts.

A simple method of achieving confusion and diffusion in a block cipher is by repeatedly apply-

ing keyed substitutions and permutations to the message. The substitutions are used to introduce

nonlinearity into the message (confusion) and the permutations are required to ensure that bits are

affected by different substitutions on subsequent iterations (diffusion). A block cipher based on this

principle is called an iterated cipher.

In practice, the designer develops a function ρ, known as the round function, which has inputs of a

message blockX and a subkeyK, and outputs a partially-encrypted message block Y = ρ(X,K). The

round function is responsible for satisfying the basic confusion and diffusion requirements, hence we

would want each bit of X and each bit of K to influence each bit of Y in a nonlinear but invertible
manner. For example, the round function defined by

ρ(X,K) def= (X �K) <<< 3 (5)

fulfils the confusion requirement by mixing the nonlinear integer addition with the linear bitwise per-

mutation, and the diffusion requirement by the bitwise permuatation. Note that this round function,

by itself, is unsuitable as a block cipher because it is easily solvable2.

By iterating the round function a fixed number of times we automatically obtain some security as

a consequence of the fact that, after each iteration (or round), the output bits become more and more

dependent on the input bits. We can use different subkeys in each iteration so that, for a 4-round

block cipher, the encryption function becomes

C = E(P,K) = ρ(ρ(ρ(ρ(P,K1),K2),K3),K4).

Similarly, decryption would be acheived by

P = D(C,K) = ρ−1(ρ−1(ρ−1(ρ−1(C,K4),K3),K2),K1).

The subkeys would be derived from the key by the key schedule algorithm (which would also need

to be designed carefully). Determining the number of rounds required for a suitable level of crypto-

graphic security is not trivial. It depends on the design and security provided by the round function.

Whilst choosing a large number of rounds may defeat most modern cryptanalytic attacks, it may also

make the cipher undesirably slow for many practical purposes. Block cipher designers tend to fix

the number of rounds after investigating the susceptibility of the cipher to various general attacks. A

“conservative” number of rounds is usually chosen, which is a few rounds more than the minimum

number of rounds required (i.e., the number of rounds which would cause the cipher to fall to some

type of attack).

The need for a separate decryption function can be avoided by designing the round function to be

an involution (i.e., ρ−1 = ρ). To decrypt, the encryption function would be applied to the ciphertext

but with the subkeys inverted (with respect to whatever operation is used to combine them with the

data) and the order of the subkeys reversed. Effectively,

P = D(C,K) = ρ(ρ(ρ(ρ(C,K−1
4 ),K−1

3 ),K−1
2 ),K−1

1 ).

This may involve some additional work in computing the decryption subkeys from the encryption

subkeys (as in the case of the IDEA cipher [8, 9]), but this would be handled by the key schedule

2The inverse of equation 5 is given by ρ−1(Y,K)
def
= (Y >>> 3)�K.
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algorithm and would be transparent to the encryption function. A cipher which has this property is

called E/D similar [8].

One problem caused by this cipher structure is that it allows for the possibility of a one-round

encryption of the message followed by its one-round decryption simply by choosing bad subkeys.

In particular, a round may cancel the effect of its previous round if its subkey is the inverse of the

previous round subkey (i.e., if Ki = K−1
i−1 for round i). If this occurs then two rounds are wasted (they

would have no effect on the message block) and so this weakness may lower the overall security of

the block cipher. There are two ways of correcting this design. First, by designing a key schedule

that guarantees that any round subkey is never the inverse of its previous round subkey. Second,

by composing the round function of involutions (to maintain E/D similarity), but ensuring that the

round function itself is not an involution. The second option is usually preferable over the first (the

cipher should be reasonably strong, independent of the key schedule).

E/D similar ciphers are “symmetrical” in their design and we can use a more convienient notation

to illustrate this point by giving the function ρ an index denoting the subkey which is used in that

particular round. For example,

C = E(P,K) = ρ1(ρ2(ρ3(ρ4(P )))),

P = D(C,K) = ρ4(ρ3(ρ2(ρ1(C)))).

If the round function is not an involution then the final round would be followed by an output trans-

formation whose purpose is to cause the cipher to be symmetrical (and hence E/D similar).

A number of modern block ciphers use the same “general” round function as the DES cipher,

because it has the useful property that the encryption function is E/D similar. These are known as

Feistel ciphers.

2.2 Feistel Ciphers

The basic principle of Feistel ciphers is that the plaintext block is split into two halves and each half

is used to encrypt the other half over a predetermined number of rounds. The result is the ciphertext

block composed of the two encrypted half-blocks.

The round function consists of an involutary substitution and an involutary permutation operat-

ing on two blocks, each of length m
2 . The substitution part of the round function, which we denote by

σ, is defined by

σi(L,R) = (L⊕ F (R,Ki), R),

where F is the cipher function andKi is a subkey. We can show that σ is an involution by showing that

σ2(L,R) = (L,R), as follows:

σ2
i (L,R) = σi(L⊕ F (R,Ki), R)

= (L⊕ F (R,Ki)⊕ F (R,Ki), R)

= (L,R).

This also shows that the cipher function does not need to be invertible. The permutation part of the

round function, which we denote by π, is defined by

π(L,R) = (R,L),

which is a simple “swapping” of halves. This is obviously an involution. Our goal is to make an E/D

similar cipher by alternately applying the substitution σ and permutation π. As both σ and π are
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involutions, this is easily acheived by ensuring that the cipher ends with the same function that is ap-

plied first (hence making the cipher appear “symmetrical”). The round function of a Feistel cipher is

ρ(L,R) = π(σ(L,R)). This is not an involution, but the cipher is E/D similar if the round substitution

σ is the first and last stage of the cipher:

C = E(P,K) = σn(ρn−1(· · · (ρ1(P )) · · ·)),
P = D(C,K) = σ1(ρ2(· · · (ρn(C)) · · ·)).

In practice, the round function ρ is applied n times and then the output transformation π is applied to

undo the π permutation in the n-th round (so the last effective operation on the message block would

be the substitution part σn, as required).

Another point that we have to address is how the decryption subkeys are derived from the encryp-

tion subkeys. It was mentioned that the decryption subkeys would be the inverse of the operation

which is used to combine them with the data. In the function σ, the key-dependent output of the

cipher function is combined with the message block using the exclusive-or operation. Hence the

decryption subkeys are the same as the encryption subkeys, since the inverse of any element, with

respect to⊕, is itself.

The only difference between encryption and decryption is the order in which the subkeys are ap-

plied, hence this construction is E/D similar.

More specifically, the plaintext is divided into two blocks, P = (L0, R0). Then, for an n-round

cipher, the following round function is iterated (for 1 ≤ i ≤ n):

Li = Ri−1,

Ri = Li−1 ⊕ F (Ri−1,Ki),
(6)

where F is the cipher function and the Ki are subkeys. The ciphertext is C = (Rn, Ln). Note that the

order of the message halves is reversed in the output; this is due to the output transformation (which

undoes the swap of the n-th round).

In general we can use any group operation⊗ in place of⊕ in equation 6 so that the round function

could be

Li = Ri−1,

Ri = Li−1 ⊗ F (Ri−1,Ki).

The round function required for decryption would be

Li = Ri−1,

Ri = Li−1 ⊗ (F (Ri−1,Ki))−1,

where it would be necessary to compute the inverse (with respect to the operation ⊗) of the cipher

function output. Consequently, the decryption round may not be the same as the encryption round,

in which case the cipher will no longer be E/D similar. Examples of ciphers which use this modified

Feistel structure are the TEA and STEA block ciphers, which use integer addition modulo 232 (the op-

eration�) instead of exclusive-or, and consequently both TEA and STEA require separate decryption

functions.

The only parts of the block cipher which are not specified by the Feistel structure are the design of

the cipher function and the key schedule algorithm which determines how the subkeys (K1, . . . ,Kn)
are derived from the keyK.
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3 The TEA Block Cipher

The TEA (Tiny Encryption Algorithm) block cipher was presented at the Fast Software Encryption

workshop in 1994 [15]. It is a 64-round Feistel cipher operating on 64-bit message blocks with a 128-

bit key. It was designed for software implementation and all its operations are on 32-bit words and use

arithmetic and logic operations rather than using (traditional) substitution and permutation tables in

the cipher function.

As mentioned previously, the round function differs slightly from the usual specification in that

integer addition modulo 232 is used instead of exclusive-or as the combining operator:

Li = Ri−1,

Ri = Li−1 � F (Ri−1,Ki),
(7)

There is no final unswap, but this is not a problem since the decryption function is separate and deals

with this. The plaintext is P = (L0, R0) and the ciphertext is C = (L64, R64). Each subkey Ki is an

ordered 3-tuple of elements in Z232 , of the form (T,U, V ) where (T,U) are 64 bits of the secret key and

V is a known 32-bit constant. The cipher function F is defined by

F (M, (T,U, V )) def= ((M << 4)� T )⊕ ((M >> 5)� U)⊕ (M � V ). (8)

To generate the subkeys, first the 128-bit key K is split into four 32-bit blocks K = (W,X, Y, Z) then

the subkeys Ki are determined by

δi = δ

⌊
i+ 1

2

⌋
,

Ki =

{(
W,X, δi

)
if i is odd(

Y,Z, δi
)

if i is even
(for 1 ≤ i ≤ 64).

For any key K the subkeys Ki are all distinct due to alternate subkeys having different multiples of δ

by the key schedule. The key schedule constant δ = 9E3779B9H is derived from the golden number

but its precise value has no cryptographic significance; its main purpose is to ensure that the subkeys

are distinct [15].

The round function of TEA is considerably more complicated than the simple block ciphers in the

previous sections of this report, which might raise the following questions:

1. Why are as many as 64 rounds used?

2. Why is the key schedule constant δ required?

3. Why is the message block shifted in the cipher function?

4. Are there any weaknesses in this system?

The last question can be answered immediately, but the answers to the first three questions should

become apparent in the later sections when we analyse the STEA cipher.

3.1 Equivalent Keys

For any cipher system, a keyK ′ is equivalent to keyK if and only if

EK(P ) = EK′(P ). (9)

As this is an equivalence relation, we can define equivalence classes inK and say that a pair of keysK

andK ′ belong to the same equivalence class if equation 9 holds. For a well-designed cipher we would
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not want equivalent keys to exist (each key K ∈ K should specify a distinct mapping of plaintext to

ciphertext) and so we would expect 2k equivalence classes by equation 9.

Thus, for the TEA cipher we would expect 2128 equivalence classes. In actual fact, however, TEA has

2126 equivalence classes (there are 2126 distinct mappings of plaintext to ciphertext). This weakness

manifests itself in the cipher function (generally the most sensitive part of a Feistel cipher). Note that

for all values ofX,Y ∈ Z232 ,

231 � 231 = 0,

X � 231 = X ⊕ 80000000H.

Hence,

X � Y ≡ (X ⊕ 80000000H)� (Y ⊕ 80000000H).

The cipher function (equation 8) can be be manipulated in a similar fashion to prove that

F (M, (T,U, V )) ≡ F (M, (T ⊕ 80000000H, U ⊕ 80000000H, V )).

This means that every 128-bit keyK = (W,X, Y, Z) has three equivalent keys of the form:

(W ⊕ 80000000H, X ⊕ 80000000H, Y, Z),

(W,X, Y ⊕ 80000000H, Z ⊕ 80000000H),

(W ⊕ 80000000H, X ⊕ 80000000H, Y ⊕ 80000000H, Z ⊕ 80000000H).

For example, encrypting plaintextP = (00000000 00000000H) with any of the following keys produces

the ciphertext C = (9327C497 31B08BBEH):

00000000 80000000 00000000 00000000H,

80000000 00000000 00000000 00000000H,

80000000 00000000 80000000 80000000H,

00000000 80000000 80000000 80000000H.

This weakness means that although TEA uses a 128-bit key, it provides at best the same security as

a 126-bit key. In an exhaustive key-search, an attacker would only have to test a quarter of the total

number of possible keys (because there is no need to try keys that are equivalent to those that have

already been tested).

In spite of the equivalent keys, the reduction in the complexity of exhaustive key-search does not

pose a threat to the security of TEA (although it does highlight a design flaw), since it is still compu-

tationally secure. However, the existence of equivalent keys means that TEA is unsuitable for use in a

hash function that is based on block ciphers, such as those suggested in [8].

To eliminate the equivalent keys it would be necessary to redesign the TEA key schedule, which is

precisely what the designers of TEA did [13]. Their improvements also defeat a “related-key” attack

on TEA that requires 223 chosen plaintexts encrypted under two related keys (the value of the second

key depends on the value of the first key) [6].

4 The STEA Block Cipher

The STEA block cipher is a 64-round Feistel cipher operating on 64-bit message blocks with a 64-bit

key. It was designed purely as a test block cipher for learning about modern cryptanalytic techniques

and a number of variations exist for the same purpose (but designed to illustrate different attacks).
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The STEA block cipher uses the round function as in equation 7 and the cipher function defined

by

F (M,Ki) = M ⊕Ki, (10)

where Ki is a 32-bit subkey. Considering the 64-bit key as two 32-bit blocks so that K = (K1,K2), the

subkeys are simply Ki = K1 for i odd and Ki = K2 for i even (where 1 ≤ i ≤ 64). Thus the halves of

the key are applied in alternate rounds.

To encrypt, the plaintext P = (L0, R0) is input to the encryption function, which iterates the round

function
Li = Ri−1,

Ri = Li−1 � (Ri−1 ⊕Ki),
(11)

for 1 ≤ i ≤ 64. The output is the ciphertext C = (L64, R64). To decrypt, the ciphertext C = (L0, R0) is

input to the decryption function, which iterates

Ri = Li−1,

Li = Ri−1 � (Li−1 ⊕Ki),

for 1 ≤ i ≤ 64. The plaintext is then P = (L64, R64). The subkeys would have to be applied in the

reverse order, as usual, and soKi = K2 for i odd and Ki = K1 for i even (where 1 ≤ i ≤ 64).

To show the effectiveness of STEA, the following table lists some plaintexts (chosen to have low

Hamming weights and distances from each other) and corresponding ciphertexts:

Key Plaintext Ciphertext

(00000000 00000000H) (00000000 00000000H) (00000000 00000000H)
(00000000 00000000H) (00000000 00000001H) (61CA20BB 297A859DH)
(00000000 00000000H) (00000001 00000001H) (297A859D 8B44A658H)
(00000000 00000000H) (00000001 00000000H) (C7B064E2 61CA20BBH)
(00000001 00000003H) (00000000 00000000H) (57112EA4 255E6231H)
(00000001 00000003H) (00000000 00000001H) (F12AEA7D ED0EC712H)
(00000001 00000003H) (00000001 00000001H) (C7B064E3 61CA20BBH) ?
(00000001 00000003H) (00000001 00000000H) (C7B064E2 61CA20BAH) ?
(55555555 55555555H) (22222222 22222222H) (0F3102B4 83B32497H)

The two ciphertext blocks marked by ? are remarkably similar, differing exactly in the places where

their corresponding plaintexts differ. This indicates a serious problem caused by a lack of diffusion.

There are other noticable patterns in the above table, but from the point of a ciphertext-only attack,

there does not seem to be any resemblence between plaintexts and their corresponding ciphertexts

(except for the case where the plaintext and key are both zero; the reason for this will be explained

later).

STEA does not inherit the equivalent keys problem that TEA suffered from. However, it has a

number of shortcomings of its own due its overly simplistic cipher function and key schedule.

5 Algebraic Solution

As explained in section 2, the round function need not be secure against algebraic solution for the

cipher to be secure, provided that a sufficient number of rounds are used.

In 2-round STEA, the plaintext P = (L0, R0) and the ciphertext C = (L2, R2) are related by

L2 = L0 � (R0 ⊕K1),

R2 = R0 � (L2 ⊕K2).
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In each equation there is exactly one unknown term. Thus STEA needs a minimum of three rounds,

otherwise we can recover the 64-bit key with only one known plaintext by

K1 = (L2 � L0)⊕R0,

K2 = (R2 �R0)⊕ L0.

Actually, any Feistel cipher would require a minimum of three rounds, since part of this problem is

caused by the fact that each round of a Feistel cipher only encrypts half a message block. If the subkey

can be recovered from the input and output of the cipher function (as in STEA) then the key can be

recovered with only one known plaintext3.

6 A Meet-In-The-Middle Attack

If we have a look at 3-round STEA with independent subkeys, i.e., no key schedule (so that the key

length effectively becomes k = 3 × 32 = 96), we find that the plaintext P = (L0, R0) and ciphertext

C = (L3, R3) are related by

L3 = R0 � ((L0 � (R0 ⊕K1)) ⊕K2),
R3 = L0 � (R0 ⊕K1)� (L3 ⊕K3).

(12)

In a known-plaintext attack, equation 12 shares four known terms (each half of the plaintext and ci-

phertext) and three unknown constants (the three subkeys). There is no way to recover any of the sub-

keys simply by manipulating these equations. An exhaustive key-search on this STEA variant would

require at most 296 encryptions and one known plaintext.

A meet-in-the-middle attack finds a useful tradeoff between memory and computation, for an

efficient key-search. Equation 12 can be rearranged to

K2 = (L3 �R0)⊕ (L0 � (R0 ⊕K1)),
K3 = L3 ⊕ (R3 � L0 � (R0 ⊕K1)).

(13)

In a known-plaintext attack, equation 13 has subkeys K2 and K3 expressed in terms of four known

terms and one unknown 32-bit constant (the subkey K1). With one known plaintext and by trying

all values of K1 ∈ F32
2 , we can find corresponding values of K2 and K3. In effect, we would have

232 possible values for the 96-bit key. Another known plaintext block is then encrypted with each of

these 232 possible keys; if the output of a trial encryption matches the actual ciphertext then with high

probability we have recovered the key4. Thus, to recover the 3-round STEA 96-bit key in a meet-in-

the-middle attack requires at most 233 encryptions and two known plaintexts. A meet-in-the-middle

attack on 4-round STEA with independent subkeys (k = 128) requires at most 265 encryptions and

two known plaintexts. With the STEA key schedule (k = 64) the attack on four rounds is less efficient

than exhaustive key-search.

A meet-in-the-middle attack could also be applied to the block cipher of equation 3. Note that

K1 = C � (P ⊕K0).

Now we can recover the key using two known plaintexts in the following way. For each known plain-

text pair, try every possible value ofK0 ∈ F64
2 and obtain two possible values ofK1. If the two possible

3The first published attack on reduced-round DES was an attack on two rounds, based on this method of attacking 2-round
Feistel ciphers [5].

4The probability that a key might be found which satisfies equation 13 for the two known plaintexts but is not the correct

key is 2−64. The correct key can be uniquely identified by testing against a third known plaintext.
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values ofK1 match then we have found the correct key. This means we have to try at most 265 encryp-

tions to recover the key, compared with 2128 that would be required for an exhaustive key-search.

There are many variations in the implementation of a meet-in-the-middle attack. A naive attempt

to double the effective key-length of a block cipher might be to encrypt the plaintext with keyK1 then

decrypt the result with a different keyK2, so that

C = D(E(P,K1),K2).

An exhaustive key-search would require up to 22k trials for the key (K1,K2) and one known plaintext.

However, a meet-in-the-middle attack on this construction can recover the key much faster. For k ≤
m, the attack can be attempted as follows. Let (P,C) and (P ′, C′) be two known plaintexts. We use a

lookup-table T and denote the i-th entry in T by T (i). Complete the lookup-table by T (E(P,K1)) =
K1, for every keyK1 ∈ Fk2 . Now, for every keyK2, letK1 = T (E(C,K2)) and compute a trial encryption

of P ′; if C′ = D(E(P ′,K1),K2) then we have found the correct 2k-bit key (K1,K2). This meet-in-

the-middle attack recovers the key with up to 2k+1 trials, memory for 2k messages, and two known

plaintexts. If k > m then the lookup-table structure needs to be slightly different since each T (i) may

have more than one value.

The meet-in-the-middle attacks are useful only when we can decompose the encryption process

into more than one equation to solve, each equation has different unknown terms, and the total

length of the unknown terms in each equation is less than the key length k.

If more than three rounds are used in a Feistel cipher then the meet-in-the-middle attack becomes

impractical, since the complexity of the attack increases exponentially with the length of each subkey

for each additional round.

7 A Divide-And-Conquer Attack

There is a very effective known-plaintext attack on STEA that can recover the entire 64-bit key with

only 32 encryptions. This attack is based on the divide-and-conquer principle whereby the cipher

structure is divided into parts and the smaller parts are attacked separately. So far we have reviewed

STEA only from a general algebraic point. We will now take a closer look at the confusion and diffusion

process and reveal a major weakness in STEA.

We denote the i-th bit of A byA[i], where the least-significant bit (LSB) ofA is A[0]. The algorithm

for computing S = A�B involves the equations

C[0] = 0,
S[i] = A[i]⊕B[i]⊕ C[i],

C[i+ 1] = A[i]B[i]⊕A[i]C[i]⊕B[i]C[i].
(14)

where S represents the sum and C is the carry. First note that S[0] = A[0]⊕B[0]; the LSB is linear over

F2. Secondly, the only nonlinearity from addition is due to the carry, which only propagates upwards

(diffusion in only one direction).

The STEA round function for the least-significant bit of the message block is linear:

Li[0] = Ri−1[0]

Ri[0] = Li−1[0]⊕Ri−1[0]⊕Ki[0],

Thus we can recover two key bits (the least-significant bits of K1 and K2) using known plaintext by

finding the linear expressions relating the LSBs of the plaintext, ciphertext and key. Denoting the
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plaintext P = (L0, R0) and ciphertext C = (L64, R64), we get the following equations after 64 rounds:

K1[0] = L64[0]⊕R64[0]⊕ L0[0],
K2[0] = L0[0]⊕R0[0]⊕R64[0].

(15)

The terms on the right-hand side are known, and hence we recover the values of K1[0] and K2[0].
Since each message bit is independent of all other message bits, except for the interference of the

nonlinear carry, we can express any key bit in terms of known message bits by

K1[i] = L64[i]⊕R64[i]⊕ L0[i]⊕ C1[i],

K2[i] = L0[i]⊕R0[i]⊕R64[i]⊕ C2[i],

where i is the bit position, and C1 and C2 are nonlinear functions of the message and key bits, due to

carry.

Now consider the next bit, bit 1, which is affected by the carry from bit 0. If we eliminate the carry

from bit 1 then we are left with the linear part corresponding to equation 15, which can be solved to

recover two more key bits. We continue in this manner until the entire key is recovered. The easiest

way to eliminate the carry is to calculate its value for the appropriate bit and then to exclusive-or it

with the ciphertext bit. To calculate the carry for the i-th bit, encrypt the (i− 1) least-significant bits

of the plaintext, using the known (i − 1) key bits. The value of the bit in the i-th position is the carry

(which we exclusive-or against the actual ciphertext bit).

Thus, we can rapidly recover the 64-bit key using only one known plaintext and 32 encryptions. In

general, for message block length m, this attack will recover the m-bit key with only m
2 encryptions,

independent of the number of rounds.

This attack cannot be applied to TEA because the shifts in the cipher function provide much better

diffusion. As each round passes, each bit of the message block becomes more dependent on other

message and key bits. Each ciphertext bit of TEA is a complex nonlinear function of a number of

plaintext and key bits; there is no simple way to solve the equations. The lack of diffusion in STEA

meant that a linear relation could be found between message and key bits in the same position; and

this, of course, was its Archilles heel.

8 Linear Cryptanalysis

The linear cryptanalysis method is one of the most recent techniques of analysing block ciphers. It

is a known-plaintext (statistical) attack, developed by Mitsuru Matsui, used to break the DES cipher

using 50 workstations and 243 known plaintexts [10, 11].

Linear cryptanalysis approximates the nonlinear part of a cipher to a linear equation (so that the

linear cipher will give the same results as the nonlinear cipher most of the time, but will also give

some incorrect results). Since the linear approximation only holds probabilistically, we need a lot

of known plaintexts to be able to make use of the approximation, particularly if the probability of

the approximation is extremely close to half (in this case the approximation provides only a slight

advantage over randomly guessing the value of a key bit).

There are two stages to applying linear cryptanalysis to a block cipher: (1) finding suitable linear

approximations of the cipher, and (2) applying the known-plaintext attack algorithm.

An overview of how suitable linear approximations for a Feistel cipher may be found is as follows:

Step 1 Find linear equations which are good approximations to the nonlinear part of the cipher func-

tion. Take note of the probability with which the linear approximation holds.
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Step 2 Extend the linear approximations to the round function, and thus formulate a linear equation

for each approximation.

Step 3 Construct a linear approximation of the block cipher by compounding linear equations for the

round function, making sure all intermediate unknown message terms are cancelled out. The

probability of this cipher linear approximation can be calculated from the probabilities of the

round approximations.

Step 4 Calculate the number of known plaintexts required for the known plaintext attack. This de-

pends on the probability of the cipher approximation as well as the required degree of success.

To illustrate what is meant by a linear approximation, we will examine the properties of the three-

input nonlinear boolean function F , defined by

F (A,B,C) = ABC ⊕BC ⊕B ⊕ C. (16)

The following table shows the output of F for all possible inputs:

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Note that this nonlinear function is biased: the output has more ones than zeros. It is unwise to use

biased functions as the nonlinear component of a block cipher (or indeed any cipher system). The

bias would definitely leak some information about the plaintext and key in the ciphertext; and this

may lead to a chosen- or known-plaintext attack [1].

The Walsh transform is used to measure the linearity of a boolean function. Specifically, for a

nonlinear function F : Fn2 → F2, calculate

SF (α) =
∑
x∈Fn2

(−1)x·αF (x), (17)

where x · α denotes the inner-product of vectors x and α. The vector α is the n-tuple of input bits

which are being tested for a correlation to the output bit. The result of equation 17 is an integer in the

range −2n−1 to 2n−1, and will be even only if the nonlinear function is 0-1 balanced (the output has

the same number of ones and zeros). In particular, the result is less than zero if the correlation holds

with probability greater than 1
2 , zero if there is no correlation, and greater than zero if the correlation

holds with probability less than 1
2 .

When analysing the DES S-boxes, Matsui generalised the Walsh transform to a functionNF : Fn2 →
Fm2 , which measures linearity between subsets of the inputs and the outputs of the nonlinear function

(the Walsh transform is the case when the nonlinear function has a one-bit output) [10].

If the Walsh transform is computed on equation 16 over all possible values of α, it shows that there

are seven distinct linear approximations (linear equations whose output correlates to the output of

the nonlinear function), as follows:

Prob=5/8 : C,
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Prob=5/8 : B,

Prob=7/8 : B ⊕ C,
Prob=5/8 : A⊕ 1,

Prob=5/8 : A⊕ C,
Prob=5/8 : A⊕B,
Prob=5/8 : A⊕B ⊕ C ⊕ 1.

These can be verified by comparing their output against the output of the nonlinear equation:

A B C F B ⊕ C A⊕ 1 A⊕ C A⊕B A⊕B ⊕ C ⊕ 1
0 0 0 0 0 1 0 0 1

0 0 1 1 1 1 1 0 0

0 1 0 1 1 1 0 1 0

0 1 1 1 0 1 1 1 1
1 0 0 0 0 0 1 1 0
1 0 1 1 1 0 0 1 1
1 1 0 1 1 0 1 0 1
1 1 1 0 0 0 0 0 0

3 5 5 8 7 5 5 5 5

Clearly the best approximation to the nonlinear expressionABC⊕BC⊕B⊕C is the linear expression

B ⊕ C, which gives matching output for 7 of the 8 possible inputs.

We will now demonstrate linear cryptanalysis of a simple 4-round Feistel cipher according to the

overview given earlier. Let the cipher function be defined by

F (M, (Y,Z)) = MY ⊕MYZ ⊕ Z,

where Y and Z are halves of the round subkey. Thus the encryption process is

Li = Ri−1,

Ri = Li−1 ⊕Ri−1Yi ⊕Ri−1YiZi ⊕ Zi,
(18)

for 1 ≤ r ≤ 4. The plaintext P = (L0, R0) and ciphertext C = (R4, L4). This can be attacked by a

divide-and-conquer approach since each ciphertext bit depends on one plaintext bit and each mes-

sage bit is encrypted independently (there is no diffusion). Applying a bitwise permutation after the

cipher function would repair the lack of diffusion, but would not defend against linear cryptanalysis

in this case.

Step 1. After one round of encryption, the unknown message block is (L1, R1), where L1 is known

plaintext and R1 = L0 ⊕ R0Y1 ⊕ R0Y1Z1 ⊕ Z1. In particular, R1 is a four-input nonlinear function of

the form A ⊕ B ⊕ BCD ⊕ CD. In fact, this nonlinear function is 0-1 balanced. The Walsh transform

reveals eight linear approximations:

Prob=10/16 : A⊕ 1,

Prob=10/16 : A⊕D,
Prob=10/16 : A⊕ C,
Prob=10/16 : A⊕ C ⊕D ⊕ 1,

Prob=14/16 : A⊕B,
Prob=10/16 : A⊕B ⊕D,
Prob=10/16 : A⊕B ⊕ C,
Prob=10/16 : A⊕B ⊕ C ⊕D ⊕ 1.
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Thus, the best linear approximation is simply

A⊕B ⊕BCD ⊕ CD ≈ A⊕B,

which holds with probability 14/16 = 0.875.

Step 2. By matching the terms of the round function (equation 18) to the expression A ⊕ B ⊕
BCD⊕CD and substituting in the suggested linear approximationA⊕B, we obtain the round linear

approximation for the `-th output bit,

Li[`] = Ri−1[`],

Ri[`] = Li−1[`]⊕ Zi[`],

This one-round linear equation matches the output of the actual nonlinear round function with a

probability of 0.875 (i.e., the same as the linear approximation).

It is important to note that the probability of this linear approximation applies only to one bit,

not the entire block. For this reason the position of the bits in a linear approximation are usually also

recorded in the equation. This is necessary if different nonlinear functions are computed on sublocks,

as in the DES S-boxes, or if bitwise permutations are used in the cipher. We will omit the notation,

since the following analysis only applies to bits in the same position within the block.

Step 3. If we had more than one linear equation for the round, this step would involve adding one-

round linear equations so that the output message bits of one equation become the input message

bits of some later round, so that they will be cancelled out eventually. The resulting equation would

represent the Feistel cipher (holding probabilistically, of course) and express a linear relation between

some plaintext, key and ciphertext bits. As we only have one linear equation this step simply involves

expanding the Feistel cipher in terms of the one-round equation. Once again, the plaintext is P =
(L0, R0) and the ciphertext is C = (R4, L4). By compounding one round linear approximations we

obtain:

L0 ⊕R0 ⊕ L4 ⊕R4 = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4. (19)

The probability that this equation holds for a random known plaintext depends on the probabilities

of each linear approximation from which it is composed. The cipher linear approximation will hold

if and only if either all of the one-round linear approximations hold, or if none of them hold. In this

case the probability of equation 19 is calculated by

(0.875)(0.875) + (1− 0.875)(1− 0.875) = 0.781

→ (0.781)(0.875) + (1− 0.781)(1− 0.875) = 0.711

→ (0.711)(0.875) + (1− 0.711)(1− 0.875) = 0.658.

The method of obtaining the probability of the cipher linear approximation from the probabilities

of the one-round linear approximations in this manner is due to the piling-up lemma described by

Matsui [10]. Equivalently, the probability of the cipher linear approximation may be calculated by

1
2

+ 2n−1
n∏
i=1

(
pi −

1
2

)
,

which evaluates the probability that the exclusive-or of n independent random variables will equal

zero. The piling-up lemma cannot be used blindly; it fails to give an accurate probability estimate on

some block ciphers, particularly if keyed permutations or data-dependent permutations are used.

Step 4. The success of an attack depends on the probability of the cipher linear approximation

and also on the number of known plaintexts. Matsui estimates the success rate of the algorithm and
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the number of plaintexts required to acheive a particular degree of success. The success rate is based

on a maximum likelihood method and is derived by approximating binary distribution with normal

distribution [10]. For a 97.7% success rate, the equationN = |p− 1
2 |−2 is suggested. Thus, for a success

rate of 97.7%, we would require |0.658 − 0.500|−2 = 40 known plaintexts. If the number of rounds is

increased from four to eight then the probability for the cipher linear approximation is 0.550 and

around 400 known plaintexts are required for a 97.7% success rate.

To perform the known-plaintext attack on this 4-round Feistel cipher, obtainN = 40 known plain-

texts (encrypted under an unknown key). Let X = 0 then, for each known plaintext, evaluate the

one-bit value of the left-hand side (LHS) of the cipher linear approximation (equation 19) and incre-

ment the counter X by one if the LHS has value zero. If X > N/2 then guess that the value of the

right-hand side of equation 19 is zero, otherwise guess that it is one. This gives us the one-bit solution

toZ1⊕Z2⊕Z3⊕Z4, which would be used to fix the value of a key bit in an exhastive key-search (thus

halving the complexity of exhaustive key-search).

This is the basic known-plaintext attack; there are improvements over this, which attempt recover

a larger portion of the key at a time and also require less known plaintext [11].

The nonlinear component in STEA (and TEA) is the integer addition operation (�). The non-

linearity in integer addition is due to the carry function, as shown in equation 14. The function

S[i] = (A � B)[i] (i.e., the algebraic normal form of S[i] where S = A � B) becomes more com-

plex as i increases, because of the fact that carry propagates upwards. The following table shows the

operation of the carry function:

A[i] B[i] C[i] C[i+ 1]
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

The Walsh transform reveals four linear approximations to the carry function, each holding with

probability 6/8 = 0.750:

Prob=6/8 : C[i],

Prob=6/8 : B[i],

Prob=6/8 : A[i],

Prob=6/8 : A[i]⊕B[i]⊕ C[i]⊕ 1.

This gives us two useful linear approximations for one carry operation, C[i] = A[i − 1] and C[i] =
B[i − 1], both holding with probability 0.750. The corresponding one-round linear approximations

are

Ri[`] = Li−1[`− 1], (20)

Ri[`] = Ri−1[`− 1]⊕Ki[`− 1], (21)

To find the linear approximation for the 64-round cipher, these equations must be extended to a

suitable linear path from the plaintext to the ciphertext. The optimal construction for a linear path in
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STEA would be to use equation 20 for all the odd rounds and equation 21 for all the even rounds. The

result is the STEA linear approximation

L64[32]⊕R64[32] = K1[31],

which is invalid since bit 32 does not exist for 32-bit blocks. Linear cryptanalysis is ineffective on the

STEA cipher, because there is no linear approximation which spans 64 rounds. In general, the best

linear approximation in n-round STEA is given by

Ln[n/2]⊕Rn[n/2] = K1[(n/2)− 1].

Hence, for 16-round STEA, we have the cipher linear approximation

L16[8]⊕R16[8] = K1[7].

which holds with probability 1
2 + 2−17. To recover one key bit (bit 7 of K1) of 16-round STEA using

linear cryptanalysis would require around 234 known plaintexts.

9 Weak Key Schedule And Weak Cipher Function

In this section, we show the importance of having a key schedule that generates distinct round sub-

keys. First we will follow on from the analysis in section 5 and describe a curious property of the STEA

cipher.

If the least-significant bits of the subkeys and plaintext halves are all equal, then these bits will

“filter through” to the ciphertext. For example,

P = (xxxxxyyy xxyyyyyyH),

K = (xxxxyyyy xxxxxxyyH),

C = (xxxxxyyy xxxxxxyyH),

where ‘x’ is any digit, and ‘y’ is either the bit-sequence of all ones (FH) or zero (0H). This should be

obvious in the case where y=0, since addition and exclusive-or also results in 0, and no carry.

Also, if K1 equals the right-half of the plaintext and K2 equals the left-half of the plaintext, then

the plaintext is not encrypted. So if an attacker has a large number of ciphertext blocks, and one block

looks suspiciously like plaintext, then it could well be the key.

This problem is caused by the output of the cipher function (equation 10) being zero for all rounds.

The output of the cipher function is zero if and only if the input message block is equal to the subkey.

Since the message block cannot be encrypted if the cipher function output is zero it is crucial that the

next subkey that affects the message block be different to ensure that the cipher function output is

non-zero (and cause the message block to be partially-encrypted, as required).

In an IBM research report, Edna Grossman and Bryant Tuckerman described a number of attacks

on a weak Feistel cipher called NDS (New Data Seal), which appears to be a simplified version of the

Lucifer block cipher [1, 4]. The NDS cipher had a weak key schedule and a weak cipher function.

The key schedule was practically non-existant; all the round subkeys were the same, which effectively

meant that in each round the entire key is input in the same form (i.e., unmodified between rounds).

The cipher function was weak for two reasons: it was usually possible to derive key bits from knowl-

edge of an input block and (encrypted) output block of the cipher function; furthermore, it would be

possible to predict the output of the cipher function for certain inputs, regardless of the key. Conse-

quently, NDS appeared highly susceptible to an attack which, in its most advanced form, could break
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NDS with 556 chosen plaintexts. However, the principle of their attack is fairly general and would be

applicable to any Feistel cipher that does not use distinct round subkeys and whose cipher function

may allow recovery of key bits from known input and output blocks. An interesting point about this

attack is that its effectiveness does not depend on the number of rounds.

The basic principle of their attack hinges on the fact that the encryption process of an n-round

Feistel cipher with no distinct round subkeys can be simplified to E(P,K) = π(ρn(P,K)). In the

following explanation, we will omit the output transformation (π) for simplicity, although the analysis

is still applicable to Feistel ciphers with the final swap. It is fairly easy to extend the proofs to take

account of the final swap.

We obtain a known plaintext (P,C), where C = ρn(P,K), and predict the result of a one-round

encryption of P ; we denote this by P ′ so that P ′ = ρ(P,K). As we are dealing with a Feistel cipher,

we know that P = (L0, R0) and P ′ = (L1, R1), where only the right half of P ′ is unknown and has to

be predicted. Predicting the result of a one-round encryption of NDS was easy due to its weak cipher

function. In fact, the NDS cipher function is considerably weaker than the STEA cipher function (it

is impossible to predict the output of the STEA cipher function if the round subkey is unknown). If

it is not possible to predict the output of the cipher function and the message block length is small

enough (e.g., m = 64) then we could try each possible value of R1 until we find the right value; the

attack would require at most 2m/2 chosen-plaintext encryptions.

We obtain the chosen-plaintext encryption ofP ′ to getC′ = ρn(P ′,K). Notice thatC′ is the (n+1)-

round encryption of P , i.e., C′ = ρ(C,K):

C′ = ρn(P ′,K)

= ρn(ρ(P,K),K)

= ρn+1(P,K)

= ρ(ρn(P,K),K)

= ρ(C,K).

In particular, for a correct guess of P ′ = ρ(P,K), the right half of C should equal the left half of C′

since C = (Ln, Rn) and C′ = (Ln+1, Rn+1). Once we have found the right value of P ′ = ρ(P,K) then

we can attempt to recover the keyK from the equations:

L0 ⊕R1 = F (R0,K),

Ln ⊕Rn+1 = F (Rn,K).

Now the problem is to recover the key given the input and output of the cipher function. As we have

two such equations, we can use one equation to determine the key and then verify the key that we

recovered by testing it in the second equation. If the cipher function is weak then recovering the key

given the cipher function input and output should be relatively simple (as in the case of NDS or STEA).

A variant of this attack can be applied to STEA with a higher computational cost. STEA does not

use the same subkey in every round, but it does use the same subkey in alternate rounds. Let K1 and

K2 be the 32-bit halves of the 64-bit key K. We can express the repetitive nature of STEA by letting R

denote two rounds:

R(M,K) = ρ(ρ(M,K1),K2).

Hence 64-round STEA can be represented as 32 successive applications of theR function. In particu-

lar, the key does not change between applications of R so that E(P,K) = R32(P,K). We now have to

be able to predict the output of R for a chosen plaintext. The STEA cipher function does not allow us

to do this; we must know the value of the subkey to predict the output of one round. The only way to
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deal with this situation is to obtain enough well-distributed known plaintexts that we have a reason-

able chance of finding a pair of plaintexts (P, P ′) such that P ′ = R(P,K). By the birthday paradox,

this would require around 232 known plaintexts. Since we cannot identify a correct pair (P, P ′), we

must attempt the following analysis on every possible pair until we recover the key. Therefore, the

worst-case time complexity of this attack would be O(264). This is comparable to the complexity of

an exhaustive key-search.

For each pair of known plaintexts (P, P ′) we solve the following equations

K1 = R0 ⊕ (L2 � L0),

K2 = L2 ⊕ (R2 �R0),

K1 = R64 ⊕ (L66 � L64),

K2 = L66 ⊕ (R66 �R64),

where P = (L0, R0), P ′ = (L2, R2), C = (L64, R64) and C′ = (L66, R66). If the two values of K1 match

and the two values of K2 match then we have found the correct key. Once again, this attack will work

regardless of the number of rounds and may still be effective if the cipher function was slightly more

complex (e.g., if the output of the cipher function was subjected to a bitwise rotation, which would

render the divide-and-conquer attack ineffective).

A similar attack can be attempted on a version of TEA with fixed subkey constants δi (e.g., δi = δ,

for all i); this version of TEA would have two distinct subkeys (like STEA). The attack on this TEA

variant was described by Roger Fleming [3]. It has a complexity of O(298) and requires around 232

known plaintexts. Here the complexity of attack is better than that of exhaustive key-search (which

was not the case with STEA). An improvement of the attack, which reduces the complexity to O(264)
at the cost of requiring an additional 232 chosen plaintexts, was outlined by David Wagner.

10 Differential Cryptanalysis

In section 2 it was shown that the difficulty of solving nonlinear equations can be useful for designing

block ciphers. For example, let us return to the block cipher of equation 3. The furthest we could

get by simple manipulation of this cipher was eliminating a subkey by taking the difference of the

ciphertexts, arriving at equation 4. Now notice that if the cipher was linear, taking the “difference” of

a pair of ciphertexts would have cancelled out both subkeys, leaving the equation:

C ⊕ C′ = P ⊕ P ′.

This simply tells us that the difference between the ciphertexts is the same as the difference between

their plaintexts; and as this holds for all messages, taking the difference does not lead to any informa-

tion about the key.

For a nonlinear cipher, the difference between ciphertexts is not the same as the difference be-

tween their plaintexts for all possible plaintexts. Furthermore, for a specific difference in the plain-

texts, the difference in the corresponding ciphertexts may depend on the key and hence reveal in-

formation about the key. This idea is the principle behind differential cryptanalysis, a general block

cipher analysis method developed by Eli Biham and Adi Shamir [2]. A successful application of differ-

ential cryptanalysis leads to a chosen-plaintext attack.

We denote the difference between a pair of messages (M,M ′) by ∆M = M⊗(M ′)−1, where⊗ is an

appropriate operation for defining “difference”. The exclusive-or operation, by its nature, is the most

versatile choice for defining difference. However, it may be preferable or necessary to use another

group operation for this purpose; for example, when applying differential cryptanalysis to an iterated
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cipher, it is preferable to use the difference operation which will cause the cipher to be a “Markov

cipher” [8, 9].

The example block cipher of equation 3 is not an iterated block cipher, but it is suitable for demon-

strating the basic ideas of differential cryptanalysis. We assume the message block lengthm = 32 and

the key length k = 64 (i.e., half the block lengths of the original description).

Letting difference be defined by subtraction modulo 232, the following equation gives the appro-

priate ciphertext difference:

∆C = C � C′

= (P ⊕K0)� (P ′ ⊕K0).

Hence, an attacker who knows the values P , P ′ and ∆C may be able to recover K0 if they can effi-

ciently solve equations of the form

C = (A⊕X)� (B ⊕X),

where A,B,C are known constants. So let us examine this type of equation in more detail, to deter-

mine precisely how much information we may be able to recover. First we express the equation in a

simpler form:

C = (A⊕X)� (B ⊕X)

= (A⊕X)� (A⊕X ⊕D)

= Y � (Y ⊕D),

where D = A ⊕ B and Y = A ⊕ X . The goal is to recover Y . The subtraction modulo 232 can be

replaced by addition modulo 232 with a little more manipulation:

C = Y � (Y ⊕D)

= Y �−(Y ⊕D)

= Y � (Y ⊕D ⊕ FFFFFFFFH)� 1,

E = Y � (Y ⊕ F ),

where F = D ⊕ FFFFFFFFH (the bitwise complement of D) and E = C � 1. Once again, Y is unknown

(and its value would lead to the subkey), and E and F are known. In a chosen-plaintext attack, the

attacker would be able to fix values of F by careful selection of plaintexts A and B. If F = 0 then

we would have E = Y � Y = Y << 1, effectively revealing 31 of the 32 bits of Y . To set F = 0, the

exclusive-or difference between plaintexts must be (FFFFFFFFH); it does not matter what the actual

plaintext values are.

Consider a chosen-plaintext attack on this block cipher. The attacker chooses a random plaintext

P , then calculates a second plaintext P ′ = P ⊕∆P (so that the exclusive-or difference between plain-

texts is ∆P ). Both chosen plaintexts are encrypted under the unknown key. The least-significant 31

bits of subkeyK0 are then recovered from the values of P and ∆C = C � C′ by

K0 = ((∆C � 1) >> 1)⊕ P.

The most-significant bit of the recovered K0 will be ‘0’. The subkey K1 is then evaluated, using either

one of the two chosen plaintexts, by K1 = C � (P ⊕ K0). Hence, the 64-bit key (K0,K1) is easily

recovered with one known plaintext and one adaptive chosen plaintext (or two chosen plaintexts)5.

5If the most-significant bit of the original subkey K0 was equal to ‘1’ (and hence incorrect in the recovered K0) then the
recovered K1 will also be incorrect in the most-significant bit. The result is that the 64-bit key (K0,K1) recovered by this

method may not be equal to the original key, but it will certainly be an equivalent key.
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In this example, the operation for defining difference was different for the plaintext (exclusive-or)

and ciphertext (subtraction modulo 232). The approach to analysing iterated ciphers requires that the

difference operation be the same for input and output. In the remainder of this report, we will define

the difference operation by exclusive-or.

Now we will attempt differential cryptanalysis on the block cipher defined by

C = (P �K0)⊕K1.

This cipher differs from the block cipher of equation 3 in that the addition and exclusive-or opera-

tions have swapped places. The difference operation is defined by exclusive-or, and so we have the

following equations for the plaintext and ciphertext differences:

∆P = P ⊕ P ′,
∆C = C ⊕ C′

= (P �K0)⊕ (P ′ �K0).

The subkey K1 is eliminated from the ciphertext difference ∆C. We need to choose values of P and

P ′, with a specific difference ∆P , that will reveal some information about K0 by the difference ∆C.

To start, note that if ∆P = 0 then ∆C = 0; we have no useful information. Also note that this

can be generalised to the case that a sequence of ‘0’ least-significant bits in the input difference will

cause the same least-significant bits to be ‘0’ in the output difference, e.g., if ∆P = xxxx0000H then

∆C = xxxx0000H. This is because the nonlinear carry only propagates upwards and, once again, we

will exploit this fact.

The Hamming weight of an integer is the number of ones in its binary representation. We now

look at what happens if the least-significant bit of the input difference is non-zero. Note that since

lower bits of input difference zero do not affect higher output difference bits, the analysis holds for

any input difference where precisely one bit is set (i.e., any input difference of Hamming weight 1). If

the input difference ∆P = 1 then we would have

∆C = (P �K0)⊕ ((P ⊕ 1)�K0).

From this we see that the least-significant bit of K0 is added to each of ‘0’ and ‘1’ and then the

exclusive-or difference is taken; the value of the least-significant bit of P has no effect on this cal-

culation. The LSB of ∆C will have value ‘1’ since it is linear. If the LSB of K0 = 0 then no carry will

be generated by either of the additions and so none of the higher bits of the output difference will be

affected (they will have value zero). In this case, ∆P = ∆C. If the LSB of K1 = 1 then the calculation

of (1 � 0) ⊕ (1 � 1) will generate a carry, which will affect higher bits. We expect that, in this case,

∆P 6= ∆C. So we can identify the value of the least-significant bit of K0 by using an input difference

of 1 and checking if the output difference is equal to the input difference. If the output difference is

the same as the input difference then assume that the LSB of K0 is ‘0’ otherwise assume it is ‘1’.

We can recover an arbitrary bit of K0 by the same technique; use an input difference of Hamming

weight 1 (set the bit in the i-th position) and check the Hamming weight of the output difference;

if it has Hamming weight 1 then assume that the i-th bit of K0 is ‘0’ otherwise assume it is ‘1’. Pro-

ceeding like this, we can recover the (m − 1) least-significant bits of K0. We cannot recover the value

of the most-significant bit of K0 in this analysis since we lose the carry anyway. However, this loss

is compensated by the fact that we automatically recover this bit when calculating the value of K1

from a known plaintext (we will either recover the original key or an equivalent key). Hence, for an

m-bit message block size (and 2m-bit key), this simple block cipher cipher is broken by differential

cryptanalysis with one known plaintext and m chosen plaintexts.
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It is possible (but much more complicated) to extend this attack to the block cipher of equation 3

defining input difference and output difference by exclusive-or. We would have output difference

∆C = ((P ⊕K0)�K1)⊕ ((P ′ ⊕K0)�K1).

Imagine that we supply an input difference of Hamming weight 1, with the i-th bit set. The compli-

cation arises because we cannot guarantee that the input bits to the addition that are lower than the

i-th bit have value zero, because some of them may have been inverted by the exclusive-or withK0. In

particular, if the (i−1)-th bit ofK0 is ‘1’ and the (i−1)-th bit ofK1 is also ‘1’ then the subsequent carry

that would be generated by their addition would disturb the higher bits, and hence the analysis. This

problem can be dealt with by some elaborate analysis, but there is little point in doing so since the

result cannot be generalised (which would be the principal reason for using exclusive-or for defining

input and output difference in this case).

There are two stages to applying differential cryptanalysis to an iterated cipher (cf. linear crypt-

analysis): (1) finding suitable differentials of the cipher, and (2) applying the chosen-plaintext attack

algorithm.

We will now apply differential cryptanalysis to a 6-round block cipher with message block length

m = 8 and key length k = 48. Let the nonlinear and invertible function F : F8
2 → F8

2 be defined by

F (x) = ((x⊕ 5CH)� 89H) >>> 6.

We know that for a linear function the difference between any pair of inputs will be equal to the differ-

ence between their corresponding outputs. As the function F is nonlinear, the output difference will

not equal the input difference for all possible inputs. In fact, for many specific input differences there

are a number of possible output differences that could occur. For example, let the difference of inputs

X andX ′ be denoted by ∆X = X⊕X ′ and the difference of their corresponding outputs Y and Y ′ be

∆Y = F (X)⊕ F (X ′). We find that there are 7 possible output differences that may occur if the input

difference to F is 01H, as follows (the differences are given in binary for ease of interpretation):

• There are 64 pairs (X,X ′) such that ∆X = 00000001 and ∆Y = 00001100.

• There are 32 pairs (X,X ′) such that ∆X = 00000001 and ∆Y = 00011100.

• There are 16 pairs (X,X ′) such that ∆X = 00000001 and ∆Y = 00111100.

• There are 8 pairs (X,X ′) such that ∆X = 00000001 and ∆Y = 01111100.

• There are 4 pairs (X,X ′) such that ∆X = 00000001 and ∆Y = 11111100.

• There are 2 pairs (X,X ′) such that ∆X = 00000001 and ∆Y = 11111101.

• There are 2 pairs (X,X ′) such that ∆X = 00000001 and ∆Y = 11111111.

A pair of input and output differences to a function form a characteristic of the function. Thus, the

function F has a characteristic (01H, 1CH) that holds with probability 32/128 = 0.250. There are two

characteristics of F that hold with probability 1.000:

• There are 128 pairs (X,X ′) such that ∆X = 00000000 and ∆Y = 00000000.

• There are 128 pairs (X,X ′) such that ∆X = 10000000 and ∆Y = 00000010.

Of these, only the latter characteristic is useful and it is due to the equivalence of X � 2n−1 over Z2n

and X ⊕ 2n−1 over Fn2 .
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The block cipher iterates the round function defined by

Ti = F (Ti−1 ⊕Ki), (for 1 ≤ i ≤ 6),

where T0 is the plaintext and T6 is the ciphertext (this is not a Feistel cipher). The subkeys (K1, . . . ,K6)
are independent, and since each subkey is of length 8 bits, the key length k is 48 bits.

When applying differential cryptanalysis to iterated ciphers, the attacker analyses the propagation

of differences between plaintexts through the block cipher and attempts to find a series of differences

between rounds which hold with high probability. This is done by compounding one-round charac-

teristics so that the output difference to one round is the input difference to the next round. The chain

of differences for i rounds of a cipher forms an i-round characteristic. For an n-round block cipher, the

attacker hopes to find an n-round characteristic that holds with high probability. The characteristic

that has the optimal probability is called the best characteristic.

Note that for inputs (X,X ′) and corresponding outputs (Y, Y ′) the one-round input difference is

∆X = X ⊕X ′ and the output difference is ∆Y = Y ⊕ Y ′. Also,

∆Y = F (X ⊕K)⊕ F (X ′ ⊕K)

= F (X ⊕K)⊕ F (X ⊕K ⊕∆X)

= F (Z)⊕ F (Z ⊕∆X),

where Z = X ⊕K is unknown. This shows that we are not interested in the actual value of the inputs;

only in their difference. It also puts the earlier analysis of the function F into context of the cipher,

since the subkey is “absorbed” into the input of the function F and we need not concern ourselves

with its value for the analysis. We are implicitly assuming that the value of the plaintext and subkeys

will not significantly affect the propagation of differences through the cipher (this is the hypothesis of

stochastic equivalence [8, 9]).

We know that the best one-round characteristic is (80H, 02H), which holds with probability 1.000.

We shall use this as a starting point to explore the possible differences that may be reached after 6

rounds. We will choose to follow the characteristic that has the highest immediate probability. This

may not necessarily lead to the best 6-round characteristic; we would have to follow each possible

path of difference (including the low-probability differences) or else use some heuristic technique to

find the best characteristic.

(1) – There are 128 pairs (X,X ′) such that ∆X = 10000000 and ∆Y = 00000010.

(2) – There are 64 pairs (X,X ′) such that ∆X = 00000010 and ∆Y = 00001000.

– There are 32 pairs (X,X ′) such that ∆X = 00000010 and ∆Y = 00011000.

– There are 16 pairs (X,X ′) such that ∆X = 00000010 and ∆Y = 00111000.

– There are 8 pairs (X,X ′) such that ∆X = 00000010 and ∆Y = 01111000.

– There are 4 pairs (X,X ′) such that ∆X = 00000010 and ∆Y = 11111000.

– There are 2 pairs (X,X ′) such that ∆X = 00000010 and ∆Y = 11111001.

– There are 2 pairs (X,X ′) such that ∆X = 00000010 and ∆Y = 11111011.

(3) – There are 16 pairs (X,X ′) such that ∆X = 00001000 and ∆Y = 00100000.

– There are 56 pairs (X,X ′) such that ∆X = 00001000 and ∆Y = 01100000.

– There are 28 pairs (X,X ′) such that ∆X = 00001000 and ∆Y = 11100000.

– There are 14 pairs (X,X ′) such that ∆X = 00001000 and ∆Y = 11100001.
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– There are 14 pairs (X,X ′) such that ∆X = 00001000 and ∆Y = 11100011.

(4) – There are 18 pairs (X,X ′) such that ∆X = 01100000 and ∆Y = 10000000.

– There are 92 pairs (X,X ′) such that ∆X = 01100000 and ∆Y = 10000001.

– There are 18 pairs (X,X ′) such that ∆X = 01100000 and ∆Y = 10000010.

(5) – There are 64 pairs (X,X ′) such that ∆X = 10000001 and ∆Y = 00001110.

– There are 32 pairs (X,X ′) such that ∆X = 10000001 and ∆Y = 00011110.

– There are 16 pairs (X,X ′) such that ∆X = 10000001 and ∆Y = 00111110.

– There are 8 pairs (X,X ′) such that ∆X = 10000001 and ∆Y = 01111110.

– There are 2 pairs (X,X ′) such that ∆X = 10000001 and ∆Y = 11111101.

– There are 4 pairs (X,X ′) such that ∆X = 10000001 and ∆Y = 11111110.

– There are 2 pairs (X,X ′) such that ∆X = 10000001 and ∆Y = 11111111.

(6) – There are 16 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 00001000.

– There are 8 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 01001000.

– There are 16 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 01101000.

– There are 32 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 01111000.

– There are 4 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11001000.

– There are 2 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11001001.

– There are 2 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11001011.

– There are 8 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11101000.

– There are 4 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11101001.

– There are 4 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11101011.

– There are 16 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11111000.

– There are 8 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11111001.

– There are 8 pairs (X,X ′) such that ∆X = 00001110 and ∆Y = 11111011.

Thus our 6-round characteristic is

(80H, 02H, 08H, 60H, 81H, 0EH, 78H),

holding with probability

128
128
× 64

128
× 56

128
× 92

128
× 64

128
× 32

128
≈ 1

51
.

This would imply that for every 51 random and uniformly distributed pairs of chosen plaintexts with

difference ∆P = 80H we expect about 1 pair of corresponding ciphertexts to have a difference of 78H.

However, it is not quite as simple as this, since the subkeys are fixed (not random) and may cause

some difference paths found by the above method to be impossible to follow in practice no matter

how many chosen plaintexts we have.

Also, there may be more than one n-round characteristic with the same plaintext difference and

ciphertext difference. For example, another 6-round characteristic of the above cipher is

(80H, 02H, 18H, A3H, 86H, 0AH, 78H),
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which holds with probability≈ 1
1561 . There is no way to tell which of these two 6-round characteristics

was used to arrive at a ciphertext difference of 78H from a plaintext difference of 80H. As there may be

many ways of arriving at a particular output difference, the probability of obtaining a pair of plain-

texts that cause the output difference of a characteristic may be higher than the probability of the

characteristic. The attacker is not usually concerned with the message differences after each round,

only in the last difference of a characteristic. An i-round differential is a pair (∆X,∆Y ) specifying the

input difference and output difference after i rounds [8, 9]. The probability of a specific differential is

the sum of probabilities of all characteristics that have the same input and final output difference as

the differential.

A right pair, with respect to an i-round differential (∆X,∆Y ), is a pair of plaintexts such that their

difference is equal to ∆X and their difference after i rounds of encryption is equal to ∆Y . A wrong

pair is a pair of plaintexts that is not a right pair.

To execute the differential cryptanalysis chosen-plaintext attack on an n-round block cipher:

1. Find an (n−1)-round differential (∆X,∆Y ) that holds with high probability (preferably the best

(n− 1)-round differential).

2. Choose a random plaintext P and compute P ′ = P ⊕ ∆X . Encrypt both plaintexts so that

C = E(P,K) and C′ = E(P ′,K), where K is the unknown key.

3. Recover all possible values of the subkeyKn that may cause the one-round outputs of C and C′

from inputs with difference ∆Y . A basic method of identifying possible subkeys is to deduce the

subkeysK that can tranform round input Y into output C, for every possible input Y , and then

compare the one-round encryption of (Y ⊕ ∆Y ) with each deduced subkey against ciphertext

C′. Any subkey K which passes this test is a possible candidate for the actual last subkey, and

we increment a counter corresponding toK by 1.

4. Repeat the test on another chosen plaintext, until one value of the subkey has been counted

significantly more than the others. This subkey (or small set of subkeys) is assumed to be the

actual subkey used in the n-th round.

If we know some n-round differential that includes the (n−1)-round differential, then we may be able

to discard some pairs of plaintexts on the basis that their ciphertext differences would not follow from

the (n− 1)-round difference.

We can apply differential cryptanalysis to an 8-round variant of STEA. The variant applies a bitwise

left rotation to the message block after the addition in the round function. The message block is

rotated by 1 bit on odd rounds, and 9 bits on even rounds, so that the round function is described by

Li = Ri−1,

Ri = (Li−1 � (Ri−1 ⊕Ki)) <<< Si,

where Ki = K1 and Si = 1 for i odd, and Ki = K2 and Si = 9 for i even. The 64-bit plaintext is

(L0, R0) and the 64-bit ciphertext is (L8, R8). The bitwise rotation provides better diffusion in this

STEA variant and would defeat the divide-and-conquer attack (but not linear cryptanalysis). This

STEA has a 6-round characteristic described by

E0000000 C0000000H,

Prob=0.250 : C0000000 40000000H,

Prob=0.500 : 40000000 00000000H,

Prob=0.500 : 00000000 80000000H,
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Prob=1.000 : 80000000 00000100H,

Prob=0.500 : 00000100 00000201H,

Prob=0.125 : 00000201 00060200H,

which holds with probability 1/256. We expect about one plaintext pair of 256 pairs to have difference

00000201 00060200H after 6 rounds of encryption. As we are dealing with an 8-round cipher, we can-

not identify right pairs with this characteristic. We could attempt the chosen-plaintext attack if we

knew the ciphertexts after 7 rounds of encryption, and we can recover these by decrypting the cipher-

text by only one round with every possible subkeyK8. Thus, for each ciphertext pairC = (L8, R8) and

C′ = (L′8, R′8), we have 232 possible values of (L7, R7) and (L′7, R′7). We can test whether this is likely

to be a right pair by taking the difference of the left halves of these ciphertexts and comparing against

the expected difference:

L7 ⊕ L′7 = 00060200H.

If this condition is not satisfied, then we discard this pair and try again on another pair of random

chosen plaintexts. Otherwise, we increment a counter for K8 and proceed with the attack assuming

that the pair is a right pair and deducing possible values ofK7 (if any) for which

L6 ⊕ L′6 = 00000201H.

This would require an additional 232 trial decryptions for every pair of ciphertexts that passed the test

from round 7. Thus, the complexity of testing one pair of chosen plaintexts is about 233 and we would

expect to recover the values of the last two round subkeys (and hence the key).

The differential cryptanalysis method was discovered before linear cryptanalysis, so there has

been considerable more research on the security of block ciphers with respect to differential crypt-

analysis. There are a number of improvements and evolutions of the basic idea, such as the concepts

of truncated and higher-order differentials (which have been used to attack the SAFER and reduced-

round IDEA block ciphers) [7].
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